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J. Phys. A :  Math., Nucl. Gen., Vol. 6, May 1973. Printed in Great Britain. Q 1973 

The photon: a collective excitation of fermion fields 

J des Cloizeaux 
Service de Physique Theorique, Centre d'Etudes Nucltaires de Saclay, BP No 2-91, Gif-sur- 
Yvette, France 

MS received 10 October 1972 

Abstract. The photon is described as a collective excitation of a fermion field. The basic 
short range self-interactions of this field are assumed to be gauge invariant and nonlocal. 
By breaking this symmetry, a one-fermion Green function of the Dirac type can be found. 
Consequently, a collective excitation of zero mass, that is, the photon, appears as a pole 
of the two-fermion Green function. Thus the usual electron and photon field theory can be 
qualitatively reconstructed. 

1. Introduction 

Since the photon has spin one and no mass, it is tempting to consider it as a bound state 
of two fermions. The idea is old and was discussed by many physicists: Ascoli and 
Heisenberg (1957), Bialynicki-Birula (1963), Bjorken (1963), de Broglie (1943), Budini 
and Furlan (1972), Heisenberg (1934, 1957, 1966), Jouvet (1957) and Nambu and Jona- 
Lasinio (1961). 

In general, the starting point of such a discussion is a nonlinear Lagrangian of the 
form : 

where the operators (!Ij are products of operators y p  

However, serious difficulties appear. The perturbation diagrams are very divergent 
and the introduction of bound states in a relativistic field theory is also troublesome, see 
Cutkovsky (1964), Itzykson et a1 (1970), Wick (1954). Moreover, there is no decisive 
reason for replacing the mass term of the Dirac Lagrangian, and only this term, by a 
biquadratic interaction. 

In this article, the question is re-examined and we show how the photon may appear 
in a natural way as a collective excitation of a self-interacting fermion field. 

2. A gauge invariant model 

The fact that the photon has no mass seems to indicate that this particle is a Goldstone 
particle corresponding to a broken symmetry. The nature of this symmetry should be 
very obvious. We think that this important broken symmetry is gauge invariance, 
though, of course, isopin conservation is also broken in the process. 
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598 J des Cloizeaux 

The Dirac equation in the absence of coupling with an electromagnetic field, IS not 
gauge invariant in itself. It is not preserved by the transformation $(x) + exp(ix(x))$(x). 
Gauge invariance is a property of the whole theory but the existence of the electro- 
magnetic field is necessary for insuring this property. In discussions of spontaneous 
broken symmetries contained in the literature, the broken symmetry is usually taken to 
be independent of space. Here the gauge symmetry is broken at each point in space- 
time. This difference must probably be related to the fact that the photon can be des- 
cribed by a field of arbitrary gauge: the gauge invariance properties of the collective 
excitation must reflect the gauge symmetry of the whole theory, at each point of space-- 
time. 

In the following, for the sake of simplicity, we consider the photon as a collective 
excitation of the P!ectron-positron field only. We assume the existence of an action W 
which is a functional of the electron-positron field. As this action has to be gauge 
invariant, it must be a function of terms of the form $(xjfi$(x) where G is a product of 
matrices y v  (it does not contain any derivative). 

Thus, retaining only the terms of lowest order, we may write : 

W($> $) = - J $(x)$(x) d4x + J $(x)bj$(x)Fj(x -Y)$cY)I"J.$cY) d4x d4y 
1 

The functions Fj(x - y )  describe very short range interactions and their properties 
are such that W is a relativistic invariant. 

The field self-interaction is nonlocal. This is an unconventional situation and a source 
of difficulties. There is no Lagrangian and the usual formalism cannot be directly 
applied; we do not even know how to proceed and in particular, how to quantize the 
fields. 

On the other hand, the nonlocal character of the interaction is inevitable ; otherwise, 
the fields would not propagate (strictly speaking a local term does not contain any 
derivative of the fields) and strong ultraviolet divergences would appear. 

Fortunately, systems of particles with nonlocal interactions are not untractable. The 
usual field theory can be generalized ; for instance, we may use a method introduced by 
Bell and Skyrme which will be described in the next section. The method may not be 
completely realistic and correct but, at least, it has the merit of leading to simple and 
well defined prescriptions. It amounts to a straightforward generalization of Wick's 
theorem. The same result could be found by the function integral method, properly 
defined by Berezin (1966) in his book on second quantization. 

3. Field theory-the Bell-Skyrme method 

The Bell-Skyrme method (Bell 1962, Skyrme 1955) enables us to express directly the 
many-body Green functions G(x,, . . . , xn!yl, :. , yn )  in terms of the action W($,  $). 

We start by assuming that the fields $ and $ which appear in W($, $), anticommute : 

13.1) [m), $Wl+ = [$(XI, $b)I + = [W, $cv,l+ = 0. 

By definition, they are given by the sum of two fields 

$(x) = a(x)+ 6(x) 

$(x) = Z(x)-b(x) .  
(3.2) 
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These fields a and b obey the following anticommutation relations : 

[a(x), iiCv)l+ = [ W ,  Kdl+ = P - ‘6(x - yv ,  

(herep is an arbitrary constant and Z the unit matrix) and all the other anticommutators 
vanish. 

The state IS) is the Skyrme vacuum: 

a(x)lS) = 0 b(x))S) = 0. (3.3) 

We set 

A($, $1 = W($, $1 - i(P - 0) 1 d4X$(X)$(X) (3.4) 

and introduce the ‘mean value’ of any functional B($, 3) of the fields by 

Finally, the Green functions are defined by 

(3.6) 

In order to avoid divergent terms, we must consider any product of the form 
$(x)O$(x) appearing in W(@,$) as a normal product (its mean value in Skyrme’s 
vacuum vanishes) and we write : 

:$(x)o+(x) : = i i(x)~o[u(x)+ &x)l+ [a(x) + E;(x)]Wx). (3.7) 

As, in ordinary field theory, G(x, , . . . , xnlyl, . . . ,y , )  can be represented by diagrams 

If W($, $) is replaced by 
as follows. 

WO($, $1 = (3.8) 
where 2 is an arbitrary operator (eg (y . p - m)), the corresponding one-body Green 
operator obtained by direct application of equations (3.5) and (3.6) is (see appendix 1): 

1 
Z + io‘ 

G = -  (3.9) 

In this case, we remark that the many-body Green function (equation 3.6) can be 
calculated by direct application of Wick’s theorem (Wick 1950, Gaudin 1960, Balian 
and Brezin 1969) to the mean value of the product $(xl). . . $(x,)$CvI). . . $@,). 

In the same way, in the general case, we may write 

W$, $1 = WO($, $1 + [ W ( h  $1 - WO($, $11 (3.10) 

and expand exp(iA($, $)) with respect to [W($, $)- WO($, $)I. Each term can be cal- 
culated by application of Wick’s theorem and each contraction of $ and $ introduces 
a factor (Z+iO)-’. Thus we find a complete diagram representation of the Green 
function. 

We see immediately that, if Wis the integral of a local Lagrangian 9 ( x ) ,  the preceding 
definitions coincide exactly with the usual ones, that is, the Green functions are expec- 
tation values in vacuum of the time ordered operators quantized according to the 
classical rules. 
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However, the present definition applies equally well when the interactions are 
nonlocal, and it leads to a straightforward generalization of the usual field theory 
diagrams. We have to show now that it is equivalent to the usual electron and photon 
field theory. 

4. The self-consistent propagator Dirac equation 

The electron propagator must be determined in a self-consistent way. Since the action 
WO(+, $) should be a relativistic invariant, we may write 

where $@) and I)@) are the Fourier transforms of +(x) and $(x) and U@) a 4 x 4 matrix. 
The corresponding Green function is 

1 
GO(P) = uo+io‘ (4.2) 

Here, a diagram will be considered as irreducible if it cannot be separated into 

We denote by X@, { U } )  the irreducible self-energy. It is a functional of the interactions 

The Green function Go@) which corresponds to the ordinary unrenormalized 

disconnected parts by cutting one or two electron lines. 

Fj(x - y )  and of U@) (but it does not depend on mo). 

electron propagator must be determined by the self-consistent equation : 

E., {u} ) -u@)+m,  = 0. (4.3) 

The original gauge symmetry is broken, if this equation has solutions U@) which are 

In order to establish a correspondence with the Dirac equation we must look for a 

(4.4) 

(the metric is 1, - 1 - 1, - 1) where C(p2)  and M(p2) are functions determined in a self- 
consistent way. 

A simple approximation consists in retaining in E@, {U),) the first order terms 
(generalized Hartree-Fock approximation : see figure 3) .  In this case, simple examples 
can be given where explicit operators U @ )  of the form (4.4) can be found. 

This shows, at least, that it is not unrealistic to assume that equation (4.3) has 
solutions of type (4.4). 

The unrenormalized electron mass associated with U @ )  is a solution of the equation : 

not constants. 

solution of the form 

U@) = C(P2)(Y .P - W P 2 N  

M ( m Z )  = m 

mM’(m2) << 1, 
and if 

we may replace Go(p) a Dirac propagator : 

where C ( p 2 )  is a simple renormalization factor. 
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5. The electrowpositron two-body Green function 

The photon will be identified with a bound state of the electron-positron system. This 
state appears as a pole in the electron-positron Green function. Let us denote by 
K(P, q ;  k )  the irreducible four point kernel (see figure 1). 

I 

? P  

I 
4 

p - k  
2 

Figure 1. Irreducible self-energy Z@) = Z@, {U}) and irreducible kernel K@, q ;  k). 

The T matrix T(p, q ;  k )  associated with electron-positron scattering is a solution of 
the Bethe-Salpeter equation (see figure 2) : 

p - k  
2 

p + k  
2 

+ ... 

k 
2 

Figure 2. The sum of diagrams on the left represents the matrix T(p,  q ;  k ) ;  the wavy line 
represents the photon propagator. 

We want to show that T(p,q; k )  has a pole for k 2  = 0 and that near this pole, this function 
can be approximated by an expression of the form : 

Here e is the unrenormalized electron charge ; the experimental value eR of the renormal- 
ized charge is eR = (47~/137)"'. 
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The poles of Tb, q ;  k )  and the residues of these poles can be found by solving the 
homogeneous equation : 

{ 1 +4k2)}Cgl&; k )  = ~ d 4 q ~ , 1 , 2 p 1 p 2 @ , q ;  k)(G'(q+#)G(q; k ) G o ( q - ~ k ) ) p z o l ,  

where i ( k )  is an eigenvalue. 

in the following sense: 

(5 .3 )  

For each value of k ,  there exists a set of eigenfunctions l'r:a2(p, k )  which are orthogonal 

1 d4p Tr cS(")@; -k)GO(p+$)G'")(p; k)G'(p-$k) = A,,(k)d,,. (5.4) 

a result which can be easily derived by using the symmetry property (see figure 1 )  

Klla2plp2b5 4 ;  k )  = Kp1/?2z1uz(P~ 4 :  - k )  ( 5 . 5 )  
The existence of a solution / r (k2)  = 0 for k = 0, is a consequence of the following 

Ward identity : 

0 
( 5 . 6 )  i @? 

? p = d4qK,1g,p1p2@~ 4 ;  O ) q G i 2 p 1 ( q )  

(here C(p)  = E@, (U))). 
This identity can be obtained by differentiating term by term the contributions of' 

the diagrams of Up). We see that by adding a momentum Ap to each internal line of a 
diagram of E@), we obtain a diagram of @ + A p )  without changing the values of the 
basic interactions, and this remark leads immediately to equation (5.6). 

[S,u(p)l,,,, = Id4qK,l,2p1p2(p, q ;  O)[Go(q)~ ,u(q)Co(q) ;p , ,~~ .  

Differentiating equation (4.3) and comparing with equation (5.6), we find : 

(5 .7)  

Thus, for k = 0 and i.(O) = 0, we find a solution: 

c'p(p; 0) = ?,U@). (5.8) 

Consequently, for k 2  = 0 and i(0) = 0, a solution also exists. This fact can be 
formally established by perturbation theory. We write : 

(the small parameter in this expansion is k . p and CL',')@) 5 GpJ(p ; 0) = ?,U@)). Since 
k 2  = 0, the tensor k"' . . . kVs is traceless and irreducible. Therefore, inserting this 
expansion in equation (5.3) which can be written in a symbolic way : 

{ 1 + 4k2)}o@ ; k )  = /d"qQ@, q ;  k M q  ; 4, (5.10) 

we find (/r(k2) = 0) 

GE;:'.,,vs@)- [d4qQb, q ;  O ) f i ~ ~ ; : ' , , , v s ( d  = Q({C''~""}, s' < SI. (5.1 1) 

Thus, OL~;:),,,,vs@) is given by an integral equation in terms of functions of lower order 
s'(s' < s). In general, since, by definition, this function is orthogonal to C."(')(p;k), the 
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equation has a solution and therefore all the coefficients O~~:~!,, ,s(p) can be calculated 
step by step. 

These remarks show that the Tmatrix given by equation (5.1) has a pole for k = 0. 
Let us determine the residue of this pole. 

Using equation (5.3) and the orthogonality relation (5.4), we find immediately that 

Kala,plp,(P, 4 ;  4 = 1 A ,  '(W +n(n)(k))@;a,(p; k )q ;p2(4 ;  --W. 
n 

In a similar way, equation (5.1) shows that the T matrix is given by: 

On the other hand, for small values of k,  equation (5.3) has a solution and 

P ( k )  2: A , k 2 .  

Thus, near the pole : 

where 

A ,  = bSd4pTr{zrucp)(u(p)+iO)-1zrucp)(ucp)+iO)-1~. 

We must assume that, for relatively small values of p 2 ,  

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

These properties may well be related to the very short range character of the inter- 

Accordingly, we write : 
action Fj(x) .  

(5.18) 

The factor C(p2)C(q2) must be eliminated by renormalizing the propagator Go(p)  

Thus comparing equations (5.2) and (5.18), we find 
(see equation (4.7)). 

(5.19) 

We remark that the photon propagator given by the T matrix in equation (5.18) is 
written in the Feynman gauge. This is somewhat surprising; other types of photon 
propagator corresponding to different gauges are possible and lead to the same physical 
S matrix values. Thus, a priori, some ambiguity could be expected, in the definition of 
the residue of the pole of the T matrix but it is not so. The T matrix is defined without 
ambiguity as a sum of well defined diagrams, in which appear only the one electron 
propagator Gob)  and basic interactions. 
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6. Crude calculation of the fine structure constant 

An expression for i,, can be found by perturbation as will be shown now, in the case 
where K(p, q ; k )  is independent of k (as in the simple ladder approximation see figure 3) : 

(6.1 1 K(p, q ; k )  = K(p, 4 ) .  

0 0 0 0 0 0  

0 0 0 0 0 0 0  0 0 0 0 0 0  

0 K / . o o o o .  

term o f  T 
(0) b )  ( C )  

Figure 3. The diagrams corresponding to the linear approximation : Hartree-Fock approxi- 
mation for X. ladder diagrams for T. The round dots represent the short range interactions 
( F , ( X - Y ) ) .  

In 9 5, we found that there exist solutions (i~~oJ(p, k )  for which i.(k2) vanishes when 
k 2  goes to zero. The scalar product kp'Op'(p, k )  is also a solution and may be expanded 
with respect to k (see equation (5.9)). In equation (5.3). let us introduce this expansion. 
namely : 

(6 .2 )  C " O ' ( p :  k )  = kpfiLo'(p, k )  = kOp'(pj+ k@k"&~;"(p)+. . . . 

The function Plq; , ' ' (p)  is given by 

f$* - 1 d4pK, 1 z 2 B  I B z @ ,  q )  [(u(qj + io) 'C'E: ''( u(q) + io) - ' I i i l Z r  

= t 1 d d ~ ~ ~ ~ ~ ~ ~ ~ ~ @ ,  q)[(u(q)+io)-l i t , .u(qj(u(qj+i~j-  *i,uiq) 

-S,u(q)(Li(q)+iO)- ' i - ,u(q)}(u(q)+ 10)- l l , j IP r .  (6.3) 

From this equation, we deduce the result: 

kpk"fiE: 'I@) = 0. 16.41 

In equation (6.1j, the second term disappears and this means that E,, can be obtained 

We find 

4i.,A, = io Tr 

by first order calculation. 

d4p(kpfiL0'(p; O)Go(p)kvc'!oJ@; O)Go(p)) 
;' [ 2dkudk,, Tr j' ddp d44[~0(~)~:01(p  ; O ) G O ~ I , , , ,  

5 
= &(gM"guP + g w g " P  + p g ' u )  ~ 

Then, after simplification, we obtain 

16.5) 
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and finally (with U,,@) = a&)) 

&Ao = - & Tr 5 d4pav{ u'(p)(u(p) + io)- 'u,(p)(u(p) + io)- 'uP(plpf(u(p) + io)- >. (6.7) 

If, we take for U@) the classical value 

U@) = C(Y . p - m )  (6.8) 

after rotation of the integration contour in the integration contour in the p o  plane, we 
find (see appendix 2) : 

(6.9) A A - L' 2 .  
0 0 - 61n 

Inserting this value in (5.19) we obtain 

e' = 96n2 N 947. 

This result is much larger than the experimental value, that is, 

(6.10) 

- 0.092, e R e - -  2 4n 
137 

but this is not very surprising. Our value is unrenormalized and it was calculated by 
introducing only one fermion field. Moreover, a few simplifying assumptions have 
been used. 

The interesting point is that the calculation gives a number which apparently 
does not depend crucially on the strength of the fundamental interactions Fj(x).  

7. Conclusion 

The present article can be summarized as follows. 
(i) Arguments have been given showing that the photon might be considered as 

a collective excitation of fermion fields. 
(ii) Using considerations of gauge invariance, we proposed to start by writing 

an action which describes the basic nonlocal gauge invariant interactions of a fermion 
field (say the electron field) with itself. The interactions depend on unknown short 
range functions FAX). 

(iii) Following ideas of Bell and Skyrme, we gave prescriptions for calculating 
Green functions when the interaction is nonlocal. 

(iv) We claimed that by breaking the gauge invariance of this action, it is possible 
to derive a self-consistent one-body Green function very similar to the Dirac propagator 
(for instance by linearizing the action : generalized Hartree-Fock approximation). 

(v) We found that, in this case, the two-body Green function has a pole. The 
corresponding composite particle can be considered as a bound state of one fermion 
and one antifermion; its mass is zero; it may be identified with the photon and we 
showed that near the pole, the T matrix behaves like a photon propagator. 

(vi) A crude estimation of the unrenormalized fine structure constant is given 
but as could be expected the result is much larger (10000 times) than the experimental 
value. 

(vii) Thus, the usual electron and photon field theory can be reconstructed; the 
long range Coulomb forces appear here as resulting from short range self-interactions 
of the fermion field with itself. 
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(viii) Since the interactions are nonlocal, we may hope to eliminate, in this way, 
all divergences from the theory. 

However, the theory remains very crude. All fermion fields should be included; 
the self-consistent symmetry-breaking process involves not only the gauge invariance 
but also the isospin. 

More detailed information must be obtained concerning the basic interactions. 
The weak interactions may well be a residue of these basic interactions and this possi- 
bility also merits exploration. 
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Appendix 1 

When a Lagrangian exists, the fermion Green functions can be calculated by using a 
Bell-Skyrme formalism (equations (3.3) and (3.4)). Here is a proof of this property. 

Let us write the Lagrangian as a sum of two terms : 

-!z&) = -!z+) + y;(x), (A.1) 

(the index II/ indicates that the field which appears in Y ( x )  is denoted by $(x)). 
The free fields are solutions of the equation : 

and the Green function is given by : 

where the fields $(x) and $(x) are the free fields. 
Conversely, the Bell-Skyrme formulae give : 

w-1, . . ’ 7 X , / Y I  5 . . . > Y,) 

- - ( - i)”& 1 .- I ( S  1 {ex p ( i  f {9&) - ( p  + O)$(x)&x)] d4u 

x 4Cvl). . . 4cVn)4(x1). . . & X n i l s ;  

1 = ( S  1 ~ X P (  i 1 {y&) - ( B  + 0 ) 4 ( x ) W j  d4x S (A.4) 

where $(x) and $(x) are anticommuting fields normalized as follows (the fields a ( x )  and 
11 
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ii(x) anticommute with b(x) and 6(x)) : 

b(x) = 4x1 + 6(x) 
b(X) = ii(x)-b(x) 

[a(x), 5Cv)l+ = [ W ,  6Cv)l+ = P -  '+ -Y)  

a(x)lS) = 0 

with 

b(x)(S) = 0. 

These expressions can be expanded with respect to Z ' (n ) .  Thus, we see immediately 
that, if the definitions of G(x,, . . . , x,lyl,. . . ,y , )  coincide, then Z'(n) # 0. Moreover, 
as it is assumed that Zo(x) is bilinear with respect to fields, both expressions of the 
Green function can be calculated by using Wick's theorem. 

Thus, to establish the equivalence of the usual theory with the Bell-Skyrme formula- 
tion, we have only to compare 

Go(x,y) = --i.Af-' {iLZ:(x)+(j3-0)$(x)$(x)} d4x 

and to show that these expressions coincide. 
The second expression has the form 

Go(x,y) = -i.Af-' iWo+(fl-O)j$(x)b(x)dx 

where 

Let @,,, $,, be the eigenvectors of Z, and Z, the corresponding eigenvalues. 
We see immediately that in this representation 

where 

b n  = an + 6, 
$, = ii,-b, 

with 

[a,, CnI = [b,, 601 = P -  'hi,,. 
We remark that (4,)' = (4,)' = 0. 
Thus, since $,, and (5, anticommute : 

(A.11) 

(A.14) 
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consequently : 

(A.15) 

Thus we derive from (A.8) 

In particular, if Y&) = $(x)(iy. ?/?x-m)$(x) 

WO = j $(P)(Y .P - m)lCI@) d4P, 

and we find the usual formula 

Go@) = 
y . p - m + io 

(A.161 

(A.17) 

(A.18) 

which is also a direct consequence of (A.7) 

Appendix 2 

We want to calculate 

&40 = - & Tr 1 d4pS,{ u'(P)(u(p) + io)- 'u,(p)(u@) + io)- 'up(P)(u@) + io) (A .  19) 

(d4P = dP0 dPl dP2 dP.3) 

( Y . P )  = W P J  

when u(pJ = c(yflp, - m). 
We have 

&Ao = -& d4pi,[Tr { y ' ( y  .p-m-iO)-'y,(y .p-m+iO)- ' y F ( y  .p-m+iO)- '11 
(A.20) 

I 
We see that the trace in the bracket is a function plf(p2) where 

(A.21) 

on the other hand the poles of f (p2)  are given by 

po = +(m'+p:+p:+p:-iO)' '. (A.22) 

For a given value of p l ,  p2, p3, we may turn the integration contour in the complex 
p o  plane. 
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We set 

Po = iqo p .  J J  = q .  ( j  = 1,2,3) 

yo = a0 y-' = laj ( j  = 1,2, 3). 

[U!, = &I". 

Thus 

The integral is transformed into 

LOAo = -&iJ d4q8y[Tr{a,(ia .q-m)-'a,(ia.q-m)-'a,(ia . q - m ) - ' } ] .  

Now, the matrix is euclidian; integrating the divergence, we find : 

(A.23) 

in2 
LOAo = -&iJd4pzV(q"f(-q2)) = - z B .  

A simple calculation shows that 

B =  -8 

and therefore that 

in2 
A A  0 0 -  --. 
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